

Astronode DevKit

Everything you need to develop a solution with the Astrocast IoT network.

READY TO CONNECT

The DevKit gives you end-to-end connectivity with Astrocast's nanosatellite IoT network in less than 20 min.

EVERYTHING YOU NEED

Hardware, documentation, libraries, GUI and access to the Astrocast portal to proof your connectivity.

FAST TIME TO MARKET

Helps you keep development time and effort to a minimum for your application integrating an Astronode S.

Product description

The Astronode DevKit has the Astronode S architecture at its core, enabling you to quickly and securely connect your assets to the Astrocast Nanosatellite Network. With the Astronode DevKit, you can easily connect and test in less than 24 hrs.

The Astronode DevKit includes a Satellite Board mounted in an IP67 housing by default and a WiFi Board for indoor simulation.

Satellite Board

The Astronode Satellite Board enable you to perform real field testing.

PCB Visual - Module & Interfaces side

Technical specifications

PCB Size	65mm x 63mm
Casing	IP67
Operating environmental range	-20°C70°C 1)
Serial Interface	UART and RS232
Preliminary, subject to change	

WiFi Board

The Astronode Wi-Fi Board helps you get familiar with and test our solution in a low latency environment without having to wait for a satellite pass for connectivity. It helps you to develop and evaluate the communication link between your asset and the backend Astrocast API. The Wi-Fi Board provides the same electrical and communication interfaces that your asset requires to interface with the Astrocast Satellite Board. Your data messages can be visualized immediately in the Astrocast Portal or retrieved with the Astrocast API, as if they had been sent via our satellites. The only difference being that your messages were transmitted over Wi-Fi.

PCB Visual

Technical specifications

PCB Size	65mm x 63mm
Operating environmental range	-20°C70°C 2)
Serial Interface	UART and RS232
Variable user payload size per message	0-160 Bytes
Wi-Fi networks supported	2.4 GHz
End-to-end network latency	A few seconds
Data access	REST API or Online portal

²⁾ Preliminary, subject to change

D302 - Green LED - Wi-Fi Client Status

State #	State Description	LED Behavior
1	No IP address	fast_blink (T=0.250s)
2	DHCP in-progress	medium_blink (T=1s)
3	DHCP successful	slow_blink (T=2s)

D301 - Orange LED - Network Status

State #	State Description	LED Behavior
1	No IP address	fast_blink (T=0.250s)
2	DHCP in-progress	medium_blink (T=1s)
3	DHCP successful	slow_blink (T=2s)

For more information visit astrocast.com

Astrocast SA • All rights reserved • 0683-DOC-PM-ASTRO-1-0• Modifications without prior notice

Questions? Get in touch

